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Abstract In this paper we investigate the linear stability and properties of the
travelling premixed combustion waves in a model with two-step chain-branching reac-
tion mechanism in the adiabatic limit in one spatial dimension. It is shown that the
Lewis number for fuel has a significant effect on the properties and stability of pre-
mixed flames, whereas the Lewis number for the radicals has only quantitative (but
not qualitative) effect on the combustion waves. We demonstrate that when the Lewis
number for fuel is less than unity the flame speed is unique and is a monotonically
decreasing function of the dimensionless activation energy. The combustion wave is
stable and exhibits extinction for finite values of activation energy as the flame speed
decreases to zero. For fuel Lewis number greater than unity the flame speed is a dou-
ble-valued function. The slow solution branch is shown to be unstable whereas the
fast solution branch is either stable or exhibits the onset of pulsating instabilities via
the Hopf bifurcation. The evolution of these instabilities leads to flame extinction.

Keywords Combustion waves · Chain branching · Linear stability

1 Introduction

Premixed combustion waves in models with two-step kinetic reaction schemes have
been studied for some time. They provide an alternative to both the classical one-step
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reaction mechanism, which has been a cornerstone of combustion theory, and models
with detailed kinetic mechanisms of the reaction. Two-step models can, on one hand,
describe the complexity of real multi-step combustion reactions more adequately than
one-step models, and on the other hand, still be relatively simple for comprehensive
general analysis.

One of the most interesting types of two-step models are the models with chain-
branching reaction. Hydrocarbon flames normally produce a pool of radicals through
the branching reaction steps. These radicals later recombine to produce heat and prod-
ucts. The chain-branching reaction mechanism cannot be adequately described by an
overall reaction. Therefore the two-step chain-branching reaction models are more
popular than other two-step kinetic mechanisms.

The first two-step chain branching reaction model was introduced by Zeldovich
in 1948 [1] and was later analysed by Liñán in 1971 [2] using the activation energy
asymptotic (AEA). Therefore this model is usually referred to as the Zeldovich–Liñán
model. The model comprises a chain branching reaction A + B → 2B, and chain-
breaking (or recombination) reaction B + B + M → 2P + M , where A is the fuel,
B is the radical, P is the product, and M is a third body. It is assumed that the first
reaction has a large activation energy and is isothermic, whereas the recombination
reaction has zero activation energy and is exothermic. The condition of an isothermic
first reaction was subsequently relaxed in [3].

In [2] it was shown that there are three flame regimes in the Zeldovich–Liñán model:
fast, slow and intermediate recombination regimes. In the fast recombination regime
the production of radicals by the branching step is much slower than the consumption
of radicals through the recombination step, which has the following consequences: the
chain-branching and chain-recombination take place in the same thin reaction zone,
the concentration of radicals is asymptotically small, and therefore the steady state
approximation can be applied to it. In the slow recombination regime, the concentra-
tion of radicals is O(1) and all radicals are produced in a thin reaction zone. However
the consumption of radicals proceeds in a long scale region greater or comparable to
the convection–diffusion region. In the intermediate recombination regime the rates
of the branching and termination reactions are comparable. The concentration of radi-
cals is neither asymptotically small nor it is O(1) and the recombination reaction takes
place in a region, which is much thicker than the branching reaction zone, but much
thinner than the convection–diffusion region.

Using the above arguments various asymptotic expansions have been introduced in
different flame zones. The resulting asymptotic differential equations are then solved
either analytically or numerically depending on the complexity of the system of equa-
tions appearing as a results of asymptotic analysis. The model considered in [2,3]
does not include heat loss and the response curves obtained in these papers are single
valued functions. In [4] the Zeldovich–Liñán model with heat loss to the surroundings
was considered by using the AEA. It was demonstrated that the flame speed as a func-
tion of other parameters of the problem is a C-shaped function which exhibits turning
point type extinction condition similar to that predicted by the one-step nonadiabatic
model [5].

In a number of investigations [6–9], the influence of stretch on premixed flame for
the Zeldovich–Liñán model was studied. The authors considered several distinguished
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limits in order to examine the problem in terms of AEA either analytically or
semi-analytically. As a result it was found that the flame response to stretching
depended upon the particular flame regime i.e. slow, fast or intermediate recombination.

The stability of flames in the Zeldovich–Liñán model has not been investigated.
It appears that the problem of stability of the combustion waves cannot be treated
effectively by using the AEA for this model. The complexity of the stability analy-
sis increases significantly as the number of reactions involved in the kinetic scheme
increases in comparison to models with one-step kinetic mechanism. The other impor-
tant property of the Zeldovich–Liñán model is the nonlinear dependence of the reaction
terms on the concentration of reactants, which is usually avoided in the one-step for-
mulation. In order to investigate the stability of the flames with chain-branching reac-
tion mechanism, a simplified version of the Zeldovich–Liñán model was introduced
recently [10]. In this model the order of the recombination reaction was reduced by
one so that the resulting kinetic scheme is written as A+ B → 2B, B + M → P + M .
The reduction of the order of the chain-breaking reaction makes the dependence of
the reaction terms on the concentration of radicals in the governing equations linear,
which allows the problem to be treated by using the AEA. The speed of the combustion
wave was determined as a function of the parameters of the problem and was shown
to be C-shaped in the nonadiabatic case. For the adiabatic case the expression derived
in [10] suggests a unique flame speed. For the case of the reactant Lewis number
less than one the analysis in [10] predicted that the wave can lose stability due to the
emergence of cellular instabilities.

In our earlier paper [11] we have investigated the properties of the model introduced
in [10] in the adiabatic case and in the limit of equal diffusivity of the reactant, the
radical and heat. In contrast to [10] the activation energy in [11] is taken to be O(1)

(not an infinite number). As noted in [7] this is a reasonable assumption for real flames
like the hydrogen oxidation flame. We also used a different nondimensionalization,
which enables us to make more convenient comparisons between one- and two-step
models. In [11] the properties of the travelling wave solutions are investigated in detail
by means of numerical simulation. It was demonstrated that the speed of the combus-
tion wave as a function of parameters is single valued. We have found that for finite
activation energy there is a residual amount of reactant left behind the travelling com-
bustion wave which is not used in the reaction [12]. This makes the problem similar
to the nonadiabatic one-step premixed flames. The other characteristic of the model
considered in [11] which makes the similarity between the adiabatic two-step reaction
and the nonadiabatic one-step system even stronger is that, at certain parameter values
the combustion wave exhibits extinction. However, this extinction only occurs at zero
flame speed. This mainly distinguishes the one- and two-step adiabatic models, since
in the former case the wave can propagate for any parameter values and even in the
nonadiabatic case the speed of combustion wave does not vanish for finite parameter
values, whereas this is not the case for the two-step models. The route to extinction
in this model was investigated in detail in [13]. It was shown that the flame speed as
a function of activation energy approaches zero in a linear fashion. The stability of
the travelling combustion waves was also investigated. For equidiffusional case the
flame is stable over an extensive parameter range which correlates with the results
in [10].
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The equidiffusional approximation used in [11,13] makes the analysis of the
problem easier. However this choice of parameters reduces the applicability of the
results to real flames with chain-branching reaction mechanism, which can be char-
acterized by various values of Lewis numbers for both radicals, L B , and fuel, L A.
This is especially true for the stability analysis, since the flame stability is expected to
depend substantially on these parameters L A,B [10]. The aim here is to investigate the
effect of varying the Lewis number for both the fuel and radicals on the properties of
the premixed combustion waves and their stability. We are predominantly interested
in the qualitative changes of the flame speed and stability character. Our investigation
focuses on several values of Lewis numbers taken in such a way so as to cover all
possible qualitative relations between the values of L A and L B . More detailed studies
on this topic is a subject of our future work, which we discuss briefly in the conclusion.

2 Model

We consider an adiabatic model of premixed flame propagating in one spatial dimen-
sion that includes the following two steps: autocatalytic chain branching A+ B → 2B
and recombination B + M → C + M . Here A is the fuel, B is the radical, C is the
product, and M a third body. It is assumed that all the heat of the reaction is released
during the recombination stage and the chain branching stage does not produce or
consume any heat. According to [11], the governing equations for the non-dimen-
sional temperature, u, concentration of fuel, v, and radicals, w, can be written in the
non-dimensional form as

ut = uxx + rw,

vt = L−1
A vxx − βvwe−1/u,

wt = L−1
B wxx + βvwe−1/u − rβw,

(1)

where x and t are the dimensionless spatial coordinate and time respectively, L A and
L B are the Lewis numbers for fuel and radicals respectively, β is the dimensionless
activation energy of the chain-branching step (which corresponds to the definition for
the one-step model [12]), r is the ratio of the characteristic time of the recombination
and branching steps (which cannot be reproduced in one-step formulation of the flame
kinetics).

Equations 1 are considered subject to the boundary conditions

u = 0, v = 1, w = 0 for x → ∞,

ux = 0, vx = 0, w = 0 for x → −∞.

(2)

On the right boundary we have cold (u = 0) and unburned state (v = 1), where the
fuel has not been consumed yet and no radicals have been produced (w = 0). The
ambient temperature is taken to be equal to zero. On the left boundary (x → −∞)
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neither the temperature of the mixture nor the concentration of fuel can be specified.
We only require that there is no reaction occurring so the solution reaches a steady
state of (1). Therefore the derivatives of u, v are set to zero and w = 0 for x → −∞.

The solution to the problem (1), (2) is sought in the form of a travelling wave
u(x, t) = u(ξ), v(x, t) = v(ξ), and w(x, t) = w(ξ), where a coordinate in the
moving frame, ξ = x − ct , is introduced and c is the speed of the travelling wave.
Substituting the solution of this form into the governing equations we obtain

uξξ + cuξ + rw = 0,

L−1
A vξξ + cvξ − βvwe−1/u = 0,

L−1
B wξξ + cwξ + βvwe−1/u − rβw = 0.

(3)

The boundary conditions (2) can be modified if we multiply the first equation in (3)
by β, add it to the second and third equations in (3) and integrate it once with respect
to ξ over (−∞, +∞). This yields a condition: limξ→−∞ S = limξ→+∞ S, where
S = βu + v + w. Combining this condition with (2) results in

u = 0, v = 1, w = 0 for ξ → ∞,

u = β−1(1 − σ), v = σ, w = 0 for ξ → −∞,

(4)

where σ denotes the residual amount of fuel left behind the wave and is unknown until
a solution is obtained.

In order for the travelling combustion wave solution to (1) to exist several condi-
tions have to be satisfied. The reactions in front of the wave, in the preheat region, and
behind the wave, in the product region, should be in chemical equilibrium. The latter
restriction implies that the radicals cannot be produced in these regions effectively.
In other words the production of radicals is overwhelmed by the consumption of the
radicals, which are governed by the second and the third terms in the right hand side of
the last equation in (1). In front of the flame, the temperature is low and the branching
reaction term, which has the Arrhenius form for the temperature dependence, vanishes.
Therefore any small concentration of radicals would exhibit a fast depletion due to the
recombination and diffusion. In the product region, the reaction must be completed
therefore the branching term is less than the recombination term in the third equation
of (1), that is

r > σ exp

( −β

1 − σ

)
. (5)

Condition (5) was first derived in [13] and it defines the region in the parameter space
where the travelling combustion waves exist. Once this condition is violated the com-
bustion waves exhibit extinction. In the reaction zone the production of radicals due
to branching reaction is dominating the depletion due to the recombination there-
fore v exp(−1/u) is greater than r . In other words, it is the reaction region where all
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radicals are produced and the concentration of the radicals vanishes in front and behind
of this region. It has to be noted here that in the reaction zone the diffusion of radicals
becomes important therefore the production term has to balance both the recombina-
tion and diffusion of radicals, which strengthens the requirement v exp(−1/u) > r .
The maximum value for v exp(−1/u) can be estimated as exp(−β/(1−σ)). Therefore
we have to require r < exp(−β/(1 − σ)) in order for the travelling wave solution to
exist. The increase of the activation energy results in the decrease of exp(−β/(1−σ)).
Therefore if r is fixed for certain value of β, the latter condition is violated and the
travelling solution exhibits extinction. The extinction phenomenon for the travelling
combustion wave can also be understood from the following consideration. Once
the activation energy of the branching reaction is increased, the burning temperature
decreases. This results in the decrease of the radicals production due to the Arrhenius
type of the branching reaction rate dependence. Since less radicals are produced, w

decreases and as a result less heat is released during the recombination step, which
again is related to the decrease of the burning temperature and the flame speed. In con-
trast to the Zeldovich–Liñán model, the decrease of the radicals concentration does
not change the balance between the rates of branching and recombination reactions
since both are proportional to w and at certain values of β the production of radicals
becomes completely dominated by the consumption of radicals in the reaction zone
due to both recombination and diffusion resulting in the extinction of the travelling
combustion wave. Therefore we conclude that extinction of the combustion wave is
inevitable in the model considered in this paper even in the adiabatic case when the
activation energy becomes sufficiently large.

3 Results

The properties of the travelling combustion waves are investigated numerically by
solving the equations (3) subject to boundary conditions (4). We used a standard
shooting algorithm with a fourth order Runge–Kutta integration scheme first and then
the results were corrected by employing the relaxation algorithm. The detailed descrip-
tion of these methods can be found in [11,12]. The control parameters used in our
investigation are the Lewis numbers for the fuel and radicals. We take L A,B one order
of magnitude smaller than, greater than, or equal to unity i.e. either L A,B = 0.1, 1.0
or 10. This allows us to cover all possible combinations for the diffusivities of heat
and reactants in order to understand the extent of the impact of these parameters on
both the properties and stability of the combustion wave solutions to the model.

The flame stability has been investigated by using the Evans function method [14]
implemented with the use of compound matrix approach [12]. However in order to
carry out such an investigation the methods outlined in [12] have to be generalized
for a model with two-step reaction mechanism. From the point of view of the com-
pound matrix method the difference between the one-step model considered in [12]
and the current model with two-step reaction mechanism is in the increased number
of governing equations. This substantially changes the topology of the linear stability
problem in the compound matrix method formulation for the case of the two-step model
and makes the methods described in [12] not applicable to the case considered here.
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(a)

(b)

Fig. 1 The dependence of (a) the flame speed c and (b) the residual amount of fuel σ on the dimensionless
activation energy β for L A = 0.1 and various values of the Lewis number for radicals L B as shown in
figure

In order to overcome this difficulty we used an exterior algebra formulation of the
Evans function method and generalized our approach to make it applicable to models
with arbitrary number of the governing equations as described in [15].

In Fig. 1 the properties of the travelling solution to (3) for small Lewis number
for fuel (L A = 0.1) are summarized. Figure 1(a) shows the flame speed as a func-
tion of the dimensionless activation energy. For parameter L B varying from 0.1 to
10 the wave speed c(β) is a monotonically decaying function exhibiting extinction
for β around 3.2. The flame speed decreases to zero according to the quadratic law
i.e. c ∼ (β − βe)

2 as the dimensionless activation energy approaches the extinction
value βe. The individual curves plotted for L B = 0.1, 1.0 and 10 possess the same
quantitative behaviour although the values of the flame speed change with varying
L B . It is interesting to note that the location of the point of extinction in the parameter
space does not depend on the Lewis number for radicals. However this issue has to be
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investigated separately. In Fig. 1(b) the residual amount of fuel σ (in logarithmic scale)
is plotted as a function of β. The dependence of σ on β is a single-valued function.
The shaded region shows the parameter values, where condition (5) is violated and
the travelling wave solutions cease to exist. For parameter values sufficiently away
from the extinction condition the residual amount of fuel is negligible. Almost all the
fuel is converted to radicals with no fuel leakage observed. As we increase β and
approach the extinction point, σ becomes significant. At the extinction condition the
residual amount of fuel reaches its maximum value corresponding to the boundary
of the shaded region i.e. the extinction condition defined by (5). Regardless of L B

the dependences c(β) and σ(β) show qualitatively similar behaviour for L A < 1.
Moreover the σ(β) curves always lie below the lower boundary of the shaded region.
The extinction value for the dimensionless activation energy is less than the maximum
value of βm which corresponds to the boundary of the shaded region or the extinction
curve i.e. a set of β and σ for which the condition r = σ exp[−β/(1−σ)] is satisfied.
However as L A is increased the extinction value of the activation energy, βe, moves
closer to the maximum value βm and coalesces with it when L A = 1. All solution
branches were found to be stable.

For the case L A = 1, the structure of the travelling solution branch in the parameter
space changes. In Fig. 2(a) the dependence of the flame speed, c, on β is plotted for
L B = 0.1, 1.0, and 10. Although c(β) is still a monotonic function approaching zero
as β reaches some critical value βe = 4.2 . . . corresponding to extinction, the behav-
iour of the wave speed is different compared to L A < 1 near the point of extinction.
Namely, the flame speed decreases to zero according to the linear law: c is proportional
to (β −βe) for β close to βe in contrast to the quadratic dependence for L A < 1. Sim-
ilar results were obtained analytically in [13]. Qualitatively the dependence of c(β) is
the same for the Lewis number for radicals varying in two orders of magnitude from
0.1 to 10. The extinction occurs when the activation energy approaches the value βm

corresponding to the turning point of the extinction curve. This extinction condition
does not depend on the variation of L B . The dependence of σ on β is plotted in the
Fig. 2(b) for L B = 0.1, 1.0, and 10. The residual amount of fuel as a function of β

is monotonic. The curve σ(β) lies below the shaded region for all values of β < βm .
For activation energies sufficiently smaller than βm the value of σ is negligible and
there is no fuel leakage and all the fuel is converted into radicals in the course of
the reaction. Closer to the extinction point, when β ≈ βm , the residual amount of
fuel becomes considerable and fuel leakage occurs. At the point of extinction, when
β = βm , the curve σ(β) becomes tangent to the extinction curve in preparation to a
more drastic change of the solution branch behaviour for L A > 1. The stability of the
travelling wave solutions was investigated by using the Evans function method. All
solution branches were found to be stable for L A = 1.0.

The dependence of the flame speed, c, on β for L A = 10 and various values of L B

is shown in the Fig. 3(a). In Fig. 3(b) the residual amount of fuel as function of β is
presented for the same parameter values. In both figures the stable solution branches
are plotted with the solid line and the dotted line represents the unstable branches.
As seen from the figures both c(β) and log10 σ(β) become C-shaped for L A > 1.
The flame speed and the residual amount of fuel as functions of the dimensionless
activation energy are double valued. There are either two solutions travelling with

123



824 J Math Chem (2008) 44:816–830

(b)

(a)

Fig. 2 The dependence of (a) the flame speed c and (b) the residual amount of fuel σ on the dimensionless
activation energy β for L A = 1.0 and various values of the Lewis number for radicals L B as shown in
figure

different flame speed or no solution exists. For small values of β the fast solution
branch is stable and is characterized by a negligibly small residual amount of fuel. As
the activation energy is increased, the residual amount of fuel grows and it becomes
significant as the turning point of c(β) and σ(β) is approached (for both curves the
turning point is reached simultaneously). It is important to note that in the case of
L A > 1, the extinction condition is reached for values of β larger than βm—the maxi-
mal activation energy for the shaded region. The slow solution branch (lower branch)
is always unstable. It is characterized by a considerable fuel leakage so that the curve
σ(β) is lying above the shaded region for all allowable values of β. As we move along
the slow solution branch by decreasing β from the turning point value for c(β), the
flame speed decreases and at a certain value βe the speed becomes zero. The behaviour
of c(β) follows the quadratic law i.e. c ∼ (β − βe)

2 as the dimensionless activation
energy approaches the extinction value βe. The variation of L B does not affect either
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(a)

(b)

Fig. 3 The dependence of (a) the flame speed c and (b) the residual amount of fuel σ on the dimensionless
activation energy, β, for L A = 10 and various values of the Lewis number for radicals L B as shown in
figure. Solid lines denote stable solutions, whereas dotted lines represent unstable solutions

the qualitative behaviour of the solution branches in the parameter space or the flame
stability.

The stability of the travelling wave solutions for L A = 10 have been investigated
using the Evans function method. The fast solution branch is found to be stable for
small values of the activation energy. As β is increased the fast solutions lose stability
before reaching the turning point due to the emergence of the pulsating instabilities
via a Hopf bifurcation. This scenario of the loss of stability has been observed for
L B ranging from 0.1 to 10. The locations of the Hopf bifurcation move closer to the
turning point as the value of L B increases.

We also investigate the stability of the fast solution branch by direct integration of
the governing equations (1) which are solved on a sufficiently large coordinate domain
with the boundary conditions (2) imposed at the edge points of the spatial grid. For our
numerical algorithm we use the method of splitting with respect to physical processes.
That is, initially we solve the set of ordinary differential equations which describes
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the temperature and the species concentration variations due to the branching and
recombination reactions by using the fourth order Runge–Kutta algorithm. Next, equa-
tions of mass transfer for fuel and radicals are solved with the Crank–Nicholson method
with the second order approximation in space and time. The initial conditions for the
numerical scheme are taken in the form of a travelling wave solution of (3). In order
to investigate the stability of the solutions the initial profiles are perturbed. The per-
turbation is added by multiplying the initial radical concentration profiles by a factor
which is taken to be close to unity. If the solution is stable the perturbation disappears
and the initial profile converges to the autowave solution travelling with the speed c
obtained from numerical integration of (3). If the travelling wave solution is unstable
then the small perturbation of the initial profiles contain portions of the eigenmodes
giving rise to instability which grow exponentially with time. As a result either a new
solution emerges, such as pulsating waves, or the flame extinguishes.

According to the linear stability analysis the rate of convergence/divergence of
the solution of (1) to an autowave is given as e−λt where λ is a spectral parameter
which can be found by the Evans function method (see [12] for more details on the
linear stability analysis). The real part of λ describes how fast the perturbations grow
(Re(λ) > 0) or decay (Re(λ) < 0) with time and the imaginary part of the spectral
parameter defines the frequency with which the perturbations oscillate in time.

The results of direct integration of (1) are presented in Fig. 4 for L A = 10, L B = 1.0
and two values of the dimensionless activation energy (a) β = 4.0 and (b) β = 4.22.
The stability analysis of the travelling wave solutions presented in Fig. 3(a, b) (curves 2)
for the given parameter values suggests that the solution is stable for β < 4.1225 . . .

and it loses stability for larger values of β due to the occurrence of Hopf bifurcation. For
the case β = 4.0, Fig. 4(a), we integrate the governing equations (1) with the perturbed
initial conditions and we found that the solution profiles converge quickly to a travel-
ling wave solution. The speed of the wave was found to be equal to the flame velocity
obtained from the integration of (3) up to the fourth significant digit. In order to illus-
trate the convergence of the solution of (1) to a travelling wave, the dependence of the
maximum value of radical concentration on time is plotted in Fig. 4(a) with the solid
line. The squares represent the prediction obtained from the Evans function method
which gives Re(λ) = −1.3502 . . . × 10−4 and I m(λ) = 6.5786 . . . × 10−4, which
results in wmax (t)−w∞

max ∼ sin(�λt +ϕ) exp(�λt), where w∞
max = limt→∞ wmax (t)

and ϕ is a phase parameter which can determined from the linear analysis. However
here ϕ is taken to be a free parameter which is chosen to best fit the numerical data
obtained from the integration of (1). We have also plotted the envelope of wmax (t)
with the dotted lines in the same figure.

The initial perturbation of the solution profile is sufficiently large in the case β =
4.0. As a result the maximum value of the concentration of radicals begins to oscil-
late with large amplitude. However, as shown in Fig. 4(a), these oscillations converge
exponentially fast to a constant value corresponding to the max[w(ξ)] = 0.1271 . . .

for the autowave solution of (3). The behaviour of the function wmax (t) is similar to
the prediction of the linear analysis. The difference can be observed only at the initial
stages of the flame propagation when the perturbation is large and the nonlinearity in
the system plays a considerable role. After the first period of oscillations the amplitude
decreases by almost twice the amount compared to the initial period of oscillations
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(a)

(b)

Fig. 4 The dependence of the maximum value of the concentration of radicals on time for L A = 10,
L B = 1.0, (a) β = 4.0 and (b) β = 4.22. The solid line shows the results from the numerical integration
of the governing equations (1), the squares represent the prediction of the linear stability analysis (in (b)
squares are connected with a dashed line). The dotted lines represent the envelope of oscillations of the
linear perturbations

and wmax (t) obtained from the integration of (1) becomes identical to the prediction
of the linear analysis. The frequency of oscillations and the rate of the perturbation
decay found with the Evans function method agree with the results of the numerical
analysis of (1).

For β = 4.22 the travelling wave solution is predicted to become unstable (see
Fig. 3 curve 2). The rate of the exponential growth of the linear perturbation is pre-
dicted by the Evans function method as Re(λ) = 1.0490 . . .×10−4 and the frequency
of oscillations as I m(λ) = 4.6530 . . . × 10−4. The initial solution profile is taken in
the form of the autowave and the perturbations are imposed by the truncation errors
of the numerical scheme. The solid line represents the results from the numerical inte-
gration of (1), the prediction of the linear analysis is shown with the squares connected
with the dashed lines, and the dotted lines mark the envelope of the linear perturba-
tion growth. The maximum value of the radical concentration grows exponentially in
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time in an oscillatory manner. After several periods of oscillations the amplitude of
pulsations becomes large. At t = 4×104 the discrepancy between the results obtained
with the linear analysis and direct numerical integration of the governing partial differ-
ential equations becomes visible indicating that the nonlinearity is beginning to affect
the evolution of perturbations. At t ≈ 5 × 104 the amplitude of oscillations reaches
a critical value whereby the distortion of the initial autowave profile of temperature
and concentration of species with growing perturbations becomes too large, and the
travelling wave cannot propagate further and the flame extinguishes. The agreement
between the prediction of the linear perturbation analysis and the results of the numer-
ical integration of (1) is good in estimating both the rate of exponential growth and the
frequency of oscillations. It should be noted that we have not observed the formation
of steady propagating pulsating waves as was for the case of the one-step model [16].
Same qualitative results were obtained for other values of β > 4.1225.

4 Conclusions

In this paper we investigated the properties and the linear stability of the travelling
premixed combustion waves in a model with two-step chain-branching reaction mech-
anism in the adiabatic limit. The model was introduced by Dold [10]. The current paper
naturally extends our previous analysis of the model with equidiffusional approxima-
tion [11,13] by relaxing the constrains on the Lewis numbers for fuel and radicals. The
Lewis numbers in this study are chosen in such a way as to cover all possible cases i.e.
L A,B � 1, L A,B � 1, and L A,B ∼ 1. The aim of such a selection of parameters is to
understand how they affect the properties and the stability of the combustion waves
in the two-step model studied here.

The investigation of the travelling combustion waves revealed that the Lewis num-
ber for fuel L A has a substantial affect on the properties and the stability of the pre-
mixed flames in our model, whereas L B only has quantitative effects on the behaviour
of combustion waves. It was demonstrated that depending on the Lewis number for
fuel, the flame speed has either subcritical or supercritical behaviour as function of
the dimensionless activation energy. The transition from sub- to supercritical type of
dependence occurs when L A = 1.

When the Lewis number for fuel is less than unity, the flame speed is a single-
valued, monotonically decreasing function of β. The flame extinction occurs as the
speed of combustion wave decays to zero quadratically as a function of β when
the critical values of the activation energy is approached i.e. c ∼ (β − βe)

2. The
travelling combustion wave was found to be stable for all parameter values in this
case.

For Lewis number for fuel greater than unity, the dependence of flame speed on
β is double valued and C-shaped. The travelling wave solutions either do not exist
or there are two solutions travelling with different speed corresponding to fast and
slow solution branches in the parameter space. Flame extinction occurs when the slow
and fast solution branches merge as a result of the turning point bifurcation. The slow
solution branch is a monotonically increasing function of β. For larger values of β,
it ceases to exist at the turning point and for smaller β, the flame speed decrease to
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zero as c ∼ (β − βe)
2 as the critical parameter value of the activation energy, βe, is

reached. For the fast solution branch, c(β) is a monotonically decreasing function. The
travelling combustion wave is stable for small values of the dimensionless activation
energy and it losses stability via the Hopf bifurcation as β is increased towards the
turning point.

The transition from single- to double-valued nature of the dependence of the flame
speed occurs for the critical value of the Lewis number for fuel, L A = 1. This case
have been investigated earlier in [11,13] for L B = 1 both numerically and analytically.
It was shown that the speed of combustion wave is a unique, monotonically decreas-
ing function of β. The flame speed vanishes at the extinction point for a finite value
of activation energy βe approaching zero according to linear law i.e. c ∼ (β − βe).
Our current study reveals that the same type of behaviour is also true for L B ranging
between 0.1 and 10. The Evans function stability analysis shows that the travelling
combustion wave is stable for L A = 1. This study clearly shows that the case L A = 1
is a distinguished limit, where the transition from one pattern in the flame dynamics
to the other occurs.

Pulsating instabilities emerge due to the occurrence of the Hopf bifurcation on the
solution branch. The rate of exponential growth of the unstable modes and the fre-
quency of oscillations were estimated by using the Evans function method. It is known
from the analysis of the one-step models that the evolution of pulsating instabilities can
lead to the formation of the pulsating waves travelling with speed oscillating in time
and characterized by periodic dependence of the solution profiles on time. We have
studied the behaviour of the fast travelling wave solutions by direct integration of the
governing partial differential equations for L A = 10 and L B = 1. The results of this
numerical analysis are in excellent agreement with the investigation of the travelling
wave solutions obtained from the integration of the ordinary differential equations and
the stability analysis carried out with the use of the Evans function. The behaviour of
the travelling wave solutions, once steady propagating wave solutions lose stability,
was investigated. It was shown that the pulsating instabilities grow exponentially in
time exactly as predicted by the Evans function analysis. However as the amplitude of
oscillations becomes large the travelling wave solution exhibits extinction rather than
pulsating behaviour. Consequently, the formation of stable pulsating solutions have
not been observed in our investigation.

It has to be noted that the process of the emergence of pulsating combustion waves
from steady propagating flames has not been fully understood even for the one-step
models. Therefore this phenomenon has to be further investigated for both types of
models. The other important issue that needs clarification is the exact scenario for the
onset of instabilities in the current model. In [12] it was demonstrated that the onset of
pulsating instability for the travelling combustion waves in one-step models is due to
the occurrence of Hopf bifurcation which originates in the parameter space from the
codimension 2 point known as the Bogdanov–Takens bifurcation. This bifurcation is
shown to be responsible for the switching nature of instability from pulsating to the
uniform type. It is important to understand whether a similar scenario exists for the
two-step model considered here. Our current analysis leads us to believe this is likely,
however this point needs to be thoroughly examined and is a subject of our current
investigation.
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